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ABSTRACT
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; SIGNIFICANCE AND EXPLANATION
\
~ One of the central problems in the mathematical theory of turbulence is

o that of breakdown of smooth (indefinitely differentiable) solutions to the

% equations of motion. 1In 1934/3.‘1eray advanced the idea that turbulence may
4
:2S . be related to the spontaneous appearance of singularities in solutions of
5;1 the 3-D incompress;ble Navier-Stokes equations. The problem is still open.
%&ﬁ ... We show—-in this reportgtﬁzt breakdown of smooth solutions to the 3-~D
i{ﬁ incompressible slightly viscous (i.e. corresponding to high Reynolds numbers,
A

or "highly turbulent‘) Navier-Stokes equations cannot occur without breakdown

in the corresponding solution of the incompressible Euler (ideal fluid)
pie ;3

equation. We provew}hen that solutions of distorted Euler equations, which

are equations closely related to the Euler equations for short term intervals,

) R A - ,
do breakdown. f(j:%cuﬂrulé : "tabfi‘ —tj?;’ R cT 1;
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NOTE ON LOSS OF REGULARITY FOR SOLUTIONS OF THE 3-D
INCOMPRESSIBLE EULER AND RELATED EQUATIONS

Petre COnstantin'

Introduction

The purpose of this paper is twofold: first to discuss the relationship between the
breakdown of smooth solutions to incompressible three-dimensional Euler and Navier-Stokes
equations; and secondly to present blow-up results for distorted Euler equations.

Both the Navier-Stokes equations and the Euler equations possess local (in time)
smooth solutions. Moreover, as the viscosity vanishes the solutions to the Navier-Stokes
equations converge uniformly on a short time interval to the solution of the Euler
equation (([(5],(7)). Adapting the method of Kato ((5)) and using a very simple ODE lemma
we prove in Section 1 that as long as the solution to the Euler egquation is smooth the
solutions to slightly viscous Navier-Stokes equationsg with the same initial data are
saooth.

Sections 2 and 3 are devoted to blow-up results for distorted Euler equations.
Differantiating the Euler egquations one obtains a guadratic egquation for the Jacobian

matrix of the velocity vector:

%% + (ueV)u + U2 = P
aui 32
where u is the velocity vector, U = (3;—)1,3 and P = Q£:7£%-) with p the pressure.
3 13

One can use the incompressibility condition TrU = 0 to express P in terms of U.

Pagsing to Lagrangian coordinates, the differentiated Euler equations become

{0.1) U, g2

2 -
3¢ + R(e){TrU¢) = 0

'Dopartmant of Mathematics, University of Chicago, Chicago, IL 60637,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041, and partially
supported by the National Science Foundation under Grant No. MCS-82-01599.
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3§§‘ where R(t) is a matrix of singular integral operators with time varying kernels. Wwhat

we call the distorted Euler equations are obtained from the above form of the genuine
Euler equations by replacing R(t) by R(0):
(0.2) 2+ 02+ reo)(zrvd) = 0 . '
Although these equations are good short time approximations of the Buler :quations,
the blow-up arguments have no direct bearing on the Euler equations.
In Section 2 we discuss the periodic case and we show, by a localizati: irgument
reminiscent of the one in [2], that a large class of initial data lead tc \kdown of the
solution of (0.2). The conditions on the initial data do not involve any mess
assumption but exclude Jacobians. Another drawback in the periodic case is e fact that
incompressibility, TrU = 0, is not preserved. This fact is due to the non aishing of

the mean of Tr02 but it is not the major reason for the blow-up. (One can m dify

slightly the equations in order to preserve the constraint TrU = 0 and still prove

5&" breakdown.) Moreover, in the whole space case the equations (0.2) do preserve

)

35 incompressibility. Section 3 treats solutions of the distorted Euler equations in the

‘." >

g X whole space. C. Foias found ([4)) that if the initial data for (0.2) have the form

' (0.3) Up(x) = Bot|x]|) (X - nx(x))

"

)

o .y, :
i where n is the dimension and =(x) = ( g} i,3 = 1,...,n, then this form is retained

x
by the solution U(t,x) of (0.2) and leads to a simple equation for the scalar quantity

B. We generalize slightly his result by allowing U, to possess an antisymmetric part,
corresponding to the vorticity. We obtain a system of integro-differential equations for
two scalar quantities 8(t,r) (corresponding to the size of the deformation tensor) and
v(t,r) corresponding to the modulus of the vorticity. For <y 3 0 we recover the Foias
equation. The success of the reduction in the number of variables and unknowns is due to
a covariance property of equation (0.2) with respect to an action of O0{(n). We prove
breakdown for solutions starting from initial data of the special form

Uotx) = Botlx|)(x = 3ntx)) + voUlxl) T x

-2~
A
R A A e A e N TR TR AP B R A N L R P, W I W \ - . . - .
e A e e A T e e e T Y T A T T R S e T T T
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If one takes the antisymmetric part of the three-dimensional distorted Euler
equations and {f one identifies 3 x 3 antisymmetric matrices J with the vectors given

by J =uw x one obtains the equation

a““-
it

which is the analogue of the vorticity equation for incompressible Euler fl~ws.

(0.4)

In (3] the simple one-dimensional model equation for the three~dimensional vorticity

equation
(0.5) %% = wHw (H = Hilbert transform)

was suggested. The breakdown of solutions to (0.2) is very similar to that of solutions
to (0.5): The quantity corresponding to the deformation tensor (the symmetric part of
U in the case of (0.2), Hw in the case of (0.5)) becomes infinite in regions when the
quantity corresponding to the vorticity (demoted w in both cases) is zero.

It is a pleasure to thank A. Majda for gsuggesting the result of Section 1 and for
stimulating discussions. I had many interesting conversations with C. Foias and S.

Klainerman. It is an equal pleasure to thank them both.
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) 1. A comparison result

Y

:?, Let us consider a solution v of the incompressible Euler equations

v
+ (ve - +

sy Ty (veV)v Vp £

.ﬁ (1.1) divv=0 :
N

b, v(0,°) = vy

W\

" in either B> or T° (the three-dimensional torus). In this section we prove that as .
\

W long as v(t,+) is smooth, the solutions to slightly viscous incompressible Navier-Stokes
¥

t: equations having v, as initial data are smooth.

3

a:. We use the notation H® for the Sobolev spaces P = nm(l3) (resp. ol El'('rs))
.,_"

and  (+,¢),, Tek, for the corresponding scalar products and norms.

Lt

‘3 Theorem 1.1

4

i:‘: Let v = v(t,x) be a solution of (1.1) for 0 < t < T, satisfying

AN
, . (1.2) Iv‘.’lm_2 < » for some m > 3 ,

tal
"y T
1 (1.3) [ 19xv] ot <=

5 L

. 0

Ty

3l

"| T
J! Then there exists vg = vo(Tikvol .} [ Jvx VIL, dt) such that, for every 0 < v < vy,
) 0

& the solution to the Navier-Stokes equation

e B (ueV)u = vhu + Vg + £

h ot
R (1.4) avu =0

[}
/_!7 u(o'.) - vo

:‘ is smooth on [0,T]. More precisely

)
g (1.5) su fu(t) - vi(e)r_ <«

" tc[Ol,"l‘] = VTm
‘ L

for some Y depending on T, v %
m

[}
o2 {) 19 x| g ae .

lLet us emphasize here that T is not assumed to be small. Instead it is assumed

that v(t) belongs to B2 for t ¢ [(0,T]. Indeed, assumption (1.3) was proven by

) -4~
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J. T. Beale, T. Kato and A. Majda ({1]) to be a sufficient condition for higher

reqularity.

Theorem 1.2

Assume

Their result can be stated as follows

(Beale, Kato, Majda)
T

f [ xv] ,dt <o, Let s > 3, vy € H®. There exists a constant c
L

0 T

depending on T, s, [ |V x v| , at, 1vgl,, such that
L

(1.6)

0
lv(t)lls <c for t<T.

In order to prove Theorem 1.1 let us consider the difference w = u - v.

will satisfy

(1.7)

%% - vaw + (veT)w + (weV)v + (weV)w = vAv + Tr
divw=o0

w(0,*) =0 .

We take the scalar product of (1.7) with w in H™, m > 3 and use

(1.8)
(1.9)

for v €

2
]((v~V)w,w)m| < e Ivi i,

2
l(w-vaw)ml < cmnvnm+1lwlm

H™), givv=0, wed™!, aivw=0 (see [5]).

Using the fact that -v(Aw,w)m »> 0 we obtain

(1.10)

S yur < VIAVE + c vl MWl + c lwi? .
dt m m m m+1 m m ©n

t

Let us multiply (1.10) by exp(-c f “vnm+’ds) and consider the quantity
0

t

y = twi exp(-c_ [ i, ,ds). We obtain the inequality

(1.11)

with

(1.12)

and

(1.13)

’. L v,(_'\. b "\J“ ‘,‘-“:.,, ‘,.V..‘(-" '-(‘y
- r F » P,

_'u ‘,_)\ PN

QA OO

0

y 2
at < VF(t) + Gy

y(0) =0

t
F(t) = ﬂAvnm exp = ¢ g fvl oy qds

S P SN
T f,

*tf " »‘NN;\ b ~.‘ <5

. =)
1'1 SRy "\,_(‘. x

Then w

"n.nhw ._U‘.A o u'?‘l
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We shall make use now of an elementary lemma:

Lenmma 1.3

let T >0, G>0 be given constants and let F(t) be a nonnegative continuous

L3y
¢
=':'o function on [0,T). Let v, be defined by
L)
() 1
‘::!' (1.14) vop R ——— -
X 8rc [ F(t)at
) °
'g_::' Then, for every 0 < v ¢ Vg, every solution y » 0 of (1.11) is uniformly bounded on
[/
;: {(0,T] and
W
K
'ffl~’ T
(1.15) y(e) < min{z2=, 12v [ merae} .
e 0
SR
'-(‘f«:
Ao Proof of lemma
ey
.-3 Let us define ¢ by
Ll
Y 1 2., 7 2
Y (1.16) € = Min{ 5=+ 16v7G([ F(e)an)¢} .
IEQ at’s 0
R
oY /e 2 %
b We divide (1.11) by (1 + Y y) : 3 € VF + €. We integrate between 0 and t:
(M +/Sy
T .
1
(1.17) /é >/§--e’r-vf F(t)at .
0

..
+

otal
N ~
o«
nh e

1
The choice € < —2— implies €T < and, for v < vy ©one has

4T2G
T 1 '/—e' T
v f F(t)dt < 27¢" Indeed, if € = 16v26(f E‘(t:)dt:)2 the last inequality is an
0 0
1
equality and if € = 2 it follows from
4T G
T T
1 € LI
n /:= sre = o ,(r) F(t)dt » v g F(t)at .

Thus (1.17) becomes ! » which implies (1.15).

. 1
2
¥ 4 1+ v/_%_y(t)
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\:" We return to the proof of Theorem 1.1.
;§
2t
L We apply Lemma 1.3 to (1.11) with F,G defined in (1.12), (1.13), wWe find vo
T
..:‘L depending on T, m, f lvlmzdt such that, if 0 < v < vy and as long as w(t) belongs
I 0
’:'».: to H™2, ¢ < T, one has
i\‘.
AN (1.18) Iw(t)ln < Ypv
N n\) T
\ for some Ym depending on T, m, (‘; lvlm_zdt.
R A
) Using standard calculus inequalities one can find bounds of the type
05
&) -’
‘,«1 T T
e, (1.19) e o € i) N o+ (vl o +£ Itlmzdt]exp(cmg Wi+ 1vi ds)
NS X, ..
: .t Since the validity of (1.18) depends upon w(t) belonging to ™2 pue not upon the
A ‘~‘: size of llw(t)lm.'_z one can argue by contradiction and infer that IW(t)lm+2 cannot
n:ﬂ'-.'h'
"’g become infinite for ¢ < T and that (1.18) is true for all ¢ < T. We omit further
L 4
o details.
LSl
.d".’)
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2. Distorted Euler equations

In this section we prove breakdown of smooth solutions of a "semi-lLagrangian” version

of the Euler equations. We start by recalling the Euler equation in R or T

PN,

l\i:: 3c“1 + ujajui = 3ip, Jei=1,.0.,n 3
“u
N (2.1) du; = 0

% - i%i

" u(0,+) = ugle) .

. ) 3 3
. = —— and summation convention is used.)

”..‘ (Here at * 3j 3xj
, '

. Differentiating (2.1) we obtain

N

vy 2

W 3,U + (ueV)U + U° = P

{ o M
- (2.2) Try = 0
u(0,+) = U,
,"-.'
[r - r)
. ',.'4 where U is the n x n matrix U =(3jui), i=1%.ee,n, 3= 1¢e.,n and P is the
Ly
,'}‘—"- Hessian of the pressure P = (afjp), i,j = 1,...,n. The constraint TrU = 0

d (incompressibility) is maintained if TrP = TrUz. This means that p solves Ap = Try?
\ ""
:1 and therefore the matrix P can be expressed in terms of U:
N
e (2.3) P = (-RRy(Tru?)), 4,3 = 1,...n
B
'! where R; are the Riesz transforms defined by

= (-ay~V/2

e (2.4) R, = (-8) 3

Lt

)‘.«’-: Let us denote by R the operator acting on n x n matrix valued functions M = (mij)’
b

LAy . .
T i=1.00,n, j=1,.0.,n by

(2.5) (R.M)ij = RiRk(mkj) .
e
,,r-"{{ We identify scalar functions £ with the matrices f+I where I is the n x n identity
AR
":-;'_ matrix. The (differentiated) Euler equations can be written as
2 2, -
BtU + (u+V)u + U® + R(TrU®) =0
(2.6} Tru = 0

U0, ) = Ugle) .

If one passes to Lagrangian coordinates in (2.6) that is, if one uses the change of
t
3

variables a** x(t,a) for x(t,a) solving

-8~-




dx
ax - u(t,x)

(2.7)
x{(0,a) = a

the Euler equations (2.6) become
3,V + v? + R(£)(T2v?) = 0
(2.8) TV = 0
V(0,+) =V,
where V(t,a) = U(t,x(t,a)) is the pullback of U and R(t) is the pullback of R
through ot
(2.9) R(EIM = [R(Me(¢T)"T))00t .

More precisely if kij(x,y) is a kernel for R;R a kernel for R(t)ij will be

3¢
kgj(a,e) = kij(x(t,a),x(t,ﬂ)). {We used the well-known fact that determinant of Jacobian
of ¢t ig one.) At t = 0 the operator R(t) coincides with the Riesz operators

R(0) = R; this because x(0,a) = a. The distorted Euler equations are obtained from the

genuine Euler equations (2.8) by freezing R(t) at ¢t = 0:

v, + v+ r(TrU?) = 0
(2.10)

U(Q,e«) = U0 .
Let us note that while (2.10) are valid approximations of (2.8) for a short time the blow
up arguments that we are going to give have no direct bearing on the Euler equations.
The equations (2.10) are well-posed in a variety of spaces. For instance we can

2 n
consider the Sobolev spaces (#®)"  of matrices with entries in HS%, s > R If s >

[N11-]

H3 are Banach algebras under pointwise multiplication; the operators Rj are bounded

in H® (for any s, of course). We conclude that, if U is a solution of (2.10)
a 2
ey HUHS < csIUNS
and the local existence and uniqueness of solutions of (2.10) follow in standard manner.
We shall treat first the periodic case; we seek solutions to (2.10) which satisfy
U(x + Lei) = U(x) for any e; = (0,...,1,...,0)t and some L > 0. We may assume L = 1

without loss of generality. Alternately, we shall refer to U as being defined on the

n dimensional torus ™ = n"/z". Let us denote, for a point x in n by Ti(x) the

-Qw




i-th principal circle passing through x:

(2.11) Ti(x) = {y ¢ -r“lyj = xymod 1, 3= 1,..en, JF 4 i = Leoin
Let us denote, for a matrix U, by S and J the symmetric and respectively
antisymmetric parts of U:

where U‘ is the transposed of U.

* L3
Uu+U Uu-u
S i 3

2 J=

Theorem 2.1

lLet U, be a smooth n x n matrix valued function on T" satisfying
(i)  Trug(x) = 0 for all x e T".

(ii) There exists x; € T" and i, 1< i <n such that

*
Y9 =~ Y
supp Jg4 N ri(xo) = g (Jg = 3 ) and
f Ug;3d%x; < 0 (no summation).
Pi(xo)

Then the solution of (2.10) having U, as initial data breaks down in finite time. More
precisely the symmetric part of the solution U(t,x) becomes infinite near ri(xo) in

finite time.

Proof

Let us introduce first some notation. We denote for two matrices M, N by (M;N)
the scalar product
(2.12) (M;N) = Tr MN* .

For two matrix valued functions on T' we denote by <M,N> the scalar product

(2.13) <M,N> = [ (M(x);N(x))dx .

Tn

Let us first remark that the operator R is symmetric:
(2.14) <RM,N> = <M,RN> .

Let us break (2.10) into its symmetric and antisymmetric parts:

(2.15) 3,5 + 82 +a%+ R(TXU%) = 0 ,

(2.16) ata + 87 +J8 =0 .

]




i i ” v - - T RN T TS T T wn

A
A}

(gg We deduce from (2.16) that

o

o (2.17) supp J(t,e) C supp Jg

;ﬁe, Indeed, we can prove (2.17) by noticing that, for any fixed x ¢ ™

A*"‘

Tt 1

:ﬁ:: EE (I(t,x)13(t,x)) = Tr(8J? + J8J) = 2Tr83% < 2m(t,x) (I(t,x);I(t,x))

it

[

:éﬁ where m(t,x) is the maximum of the absolute values of the eigenvalues of 8(t,x). It
Y .

i follows from Gronwall's inequality that. as long as 8(t,x) is smooth, if Juy(x) = 0,
‘ &

’{4 J(t,x) = 0, Let & be an n x n matrix valued smooth function satisfying the following
okt

) conditions:

N

- (a) supp & N supp Jg = ¢,

voad (b) for every x ¢ T, #(x) is a symmetric, nonnegative matrix, i.e. &(x) = Y(x)2 for
(¥

% < some symmetric ¥Y(x).
i (c) RO=0.

4

. (d)  <sy,® < 0.
- Let us postpone for the moment the construction of & and proceed with the proof.
iﬁi Taking the scalar product of (2.15) with & we obtain

S

3 (2.18) % <8, 0> + <52,8> + 32,8 + <R(Tru?),8> = 0 .

Now <R(Tr02),0> - <Truz,R0> = 0 because of agsumption (c) and of the symmetry (2.14)
of R. Moreover, combining (2.17) and assumption (a) we deduce <J2,0> = 0. Thus (2.18)
becomes

n® d_ 2 -

b (2.19) G0 S/ + <55, =0

\) Now

189 l¢s,8>] = |[ Tr(s(x)®(x)ax| < [ |Tr(s(x)¥(x)¥(x))|ax ¢

'I n n

) i T T

2t < [ (Te(s()¥00) (SO0 ¥x) ) /2 (Trvix) vix) ) V2ax <

n

T

< (f mstx¥o¥osman Vi maxan'? = 2,02 () maxman'/? .,
n n n
T T T
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It follows from (2.19) that

%<so>+——£——<o.
[ Tre(x)ax

,rn

(2.20)

We assumed in (d) that <s°,o> < 0 and thus we infer that <S(t,-),%> must become -=

fn Tro(x)dx
T

= |<s°,o>| .

We are going to show now how one can construct ¢ satisfying properties (a)-(d).

for t not larger than T,

Let us take a neighborhood V of Xo such that for y e V, Pi(y) N supp Jy = $. Since
Ug;(X) = Sp;;(x) assumption (ii) implies { x Sgii(XgqeesesX,oensXgrlax is
negative. We may assume that iro

f Spiy <O forall yeV.

ri(y)

Let o(x) = ¢(X)2 with $(x) a smooth function defined in 7", independent of the i-th

variable (that is, constant on circles ry(z) for any z e T") with support in
K= U TI;(y) and identically 1 on a set Ky = U F;(y) for some x4 ¢ Vy CC V. We
yev yeV

define &(x) to be the n x n matrix having all eﬂtries equal to zero with the exception

of the entry &(x);; set to be equal to ¢(x). Clearly properties (a), (b) and (d) are

satisfied from construction. Condition (c) is satisfied for a matrix ¢ if its columns

are divergence free. In the constructed matrix the only nonzero column is the i~th and

aiv(x) = 0. This completes the proof of Theorem 2.1.
!
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3. Solutions with spherical symmetry

& In [4] C. Foias showed that the equation (2.10} in the whole space R" admits

‘o solutions of the form U(t,x) = B(t,|x|)(I - nm(x)) where I is the identity matrix
»

b: and n(x) is the projector on the direction x

N

4 -

‘ (3.1) nx) = (———1) 1,9 = 1,00e0n .

| IxI?

o

{ Moreover he obtained a simple equation for the scalar quantity B which blows up. We
)

¢

:s shall generalize slightly this result, allowing antisymmetric parts in U(t,x). The main
AF

reason behind our desire to have nontrivial antisymmetric parts in U(t,x) is that they

L

¥

o correspond to the vorticity in the case of genuine Euler equations.

N

Let A be a rotation, A ¢ O(n). We denote for a scalar function in R®, f, by
fA the composed

q

. (3.2) £a(x) = £(AX) .
K -

3 For a matrix valued function M we dencte by M, the matrix with entries

? (MA)ij - (Mij)A’ We define the operations T, and ;A on n x n matrix valued

4

¥ functions as

N (3.3) T,M = A" MA
+Y * A A" !

1)

o -1

) (3.4 T M= (det A)A 'M,A .
) ) At T A
5, Finally, for a matrix valued function U we define L,(U) by

N
‘ (3.5) Ly(U) = T,(8) + T,(J) where U=5§+J,

\ S -% (U + U'), J -;’ (U - U'). Let us denote by N(U) the operator giving the distorted
~ Euler equation in R":

" (3.6) N(U) = 3,U + U2 + R(TEU?) |

q

Proposition 3.1%.

For aay A ¢ O(n), N is covariant with respect to Ly:

X O x, a ]

(3.7) L, (N(U)) = N(LU) .

ek
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+ “:
0 o8
g
}‘:' t Corollary 3.2.
gh&ﬂl If the initial data U, is invariant with respect to A, i.e. if L,(Uy) = Uy then

the solution U(t,x) is invariant with respect to A,
(3.8) Lp(U(t,*)) = Ult,e) . :

Proof of Proposition 3.1.

Let us take the symmetric and antisymmetric parts of N(U)
*
N(U) + N(U)

(3.9) = = 3,8 + 82 + 3% + R(TrU?) ,
N - v’

(3.10) ———2~—(-L=ata+sa+as .

Applying %A to (3.10) we obtain
v% -
o) * N(L_U) = (N(L_ U))

4 5 (NU) - NU) y .o o ~ oA A

' T, (=) =3T3 + (T,S)(T,J) + (T,J)(T,S) 3 .

7,

o

In order to check the T, covariance of the symmetric part of N(U) we make use of the

-
Lo

by

well-known covariance with respect to rotations of the Riesz transforms ([6])
(3.11) TA(Rf) = R(fA)
for any scalar function ¢£.
We check now that Tr(LAU)2 = (TrUz)A. Indeed
2 . & 2y = 2 8 2 2 2
Tr(LAU) TI((TAS + TAJ) ) Tr((TAS) + (TAJ) ) = Tr(TA(S ) + TA(J )) =
Tra”W(s? + 32),a = m(s? + 3%, = (re0?), .

Applying T, to (3.9) we obtain

:;) .

.
N(L_U) + (N(L U))
_ 2 N o2 2, _ A A
= 3t(TAS) + (TAS) + (TAJ) + R(Tr(LAU) ) 3 .

Ay

*
N(U) + N(U)
)

l’

e A

This proves the proposition. Corollary (3.2) follows from unigueness of solutions of

-8
PN Y

N(U) = 0.

ey

Let us restrict our attention for a moment to the case n = 3. Any antisymmetric
matrix J defines uniquely a vector w ¢ R3 such that Jv = w x v for any vV ¢ R3.

Here w x v is the vector (m2v3 - WaVy, W3Vy T WeV3, WeVp -~ mzv,)t and clearly w is

determined by wy = J3p, Wy = Jgq, wq = Jyqe The matrix 32 can be computed in terms of

-14~
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the vector w1

(3.12) 32 = -|u](1 - %)

vhere x, = lwlz .

We note here that if J(x) is the antisymwetric part of the Jacobian of a function
u(x) i.e. J(x) = % (a,ui - aiuj), i, = 1,2,3 then uwix) = % (Vv x u)(x)e If J(t,x)
satisfies the antisymmetric part of (2.10) i.e. if
(3.13) ata +87 +J8=0
then forming the quantities w(t,x) corresponding to J(t,x) we obtain from (3.13) the
equation
(3.14) w8 .
This is the analogue of the vorticity equation in the case of Euler equations.
Summarizing, the equation (2.10) is equivalent in the three-~dimensional case to

2432 + R(Tr82 + T232%) = 0

(3.18) 3,8 + 8
coupled with (3.14) where 2 is given by (3.12). We can consider the system (3.14),
(3.15) with J% defined by (3.12) in any number of dimensions: & will bea nxn
symmetric matrix and w an n vector.

Proposition 3.2

Assume that the initial data for the system

(3.16) 3w = B0, N
(3.17) 3,8 + 8% + 3% + rerr(s? + 3%)) = 0
w, w
where J2 = -]mIZ(I - m)e M, = (T—T%J, i,y = 1,...,n are of the form
w
(3.18) mo(x) hd Yo(|x|)‘ 'r)xir v X € Rn v
(3.19) Spix) = Bo(|x])(X = nn(x)), n(x) given in (3.1).

Then for as long as the solution S(t,x), w(t,x) stays smooth, it has the form

(3.20) wlt,x) = y(t,|x]) T’l:T ,

-15=
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(3.21) s(t,x) = 8(t,|x| (I - nn(x))

where Y, B are two scalar functions satisfying

(3.22) 3,8 + 82 - y? 21 { " ng? - y2ran = 0,
r 0

(3.23) Y+ (n - NYB =0,

(3.24) ¥(0,x) = yg(r), B(O,r) = Bylx) ,

(3.25) Y(t,0) = Y(t,®) = 0,  B(t,0) = B(t,=) =0 .

Remark 1

The equation obtained by Foias is the particular case vy(t,r) = 0 arising from

In n =3 initial data of the form (3.18), (3.19) are those which satisfy
LpUg = Ug, for all A ¢ 0(3), Truy = 0.
We start by computing Rf for a radial function.
Lemma 3.3
Let f = f(r) be a smooth function defined for r » 0 decaying sufficiently at
infinity (for instance £(|x|) e L' N12 in RK'). Then
{(3.26) Rf = =[gI + k7]

when g and k are radial functions defined by

(3.27) g(x) = ‘—f 8" '£(s)ds
o
n r
(3.28) k(r) = £(r) - 2= [ ™ 'e(s)as .
0
Proof
ar

« Then

Let us use the notation £' =g, r = | x

£'(r) £'(r)
Bijf(t) - Gij + ((-—;——) r)m{x). On the other hand
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Mglr)8yy + h(x)xyxy) = (Ag + 2008,y + (sh + By,

Thus afj:(:) = A(q(r)éij + h(r)xixj) if the system

(3.29) Ag + 2h = £l§51 .
(3.30) r(4h + 5%—) - (E—fil) is solved . .

Now (3.30) follows from (3.29) if

(Ag)' + 2h' = r(Ah + 53l) i.e. if (Ag)' = (rh')' + nh' .
This follows if Ag = (rh)' + ——— T (rh). So (3.30) is a consequence of (3.29) if
g' = rh. With this choice for g we solve (3.29):
(rh)’ +9~;—-1-rh+2h--£—'-.

This gives (r"k)' = r™' for k = r’h. We obtain the formula (3.28) for k:

r
(3.31) k(r) = £(r) - 5; [ 8" '¢(s)ds .
]

"

Then g' = % k. 1In order to check (3.27) let us note that
(ng +k - £)* = %-k + k! -f' =0.
Thus, since all these functions vanish at infinity we obtain
(3.32) f=ng +k.
Therefore (3.31) and (3.32) imply (3.27). We note that (3.32) follows also from the
familiar R;R;f = -f (see (6]) by taking the trace in (3.26).

Proof of Proposition 3.2

We ghall use tha ansatz w(t,x) = y(t,|x]) TﬁT. stt,x) = B(t,|x|) (I - nm(x)) and
check that equations (3.16), (3.17) give consistent equations for 8, Y. Equation (3.16)
becomes 3,y = (1 - n)By i.e. (3.23). wNow 82 = B3I - nm)? = 82(I + (n? - 2n)m)
because 72 = 5. Also J2 = -72(1 = 7). Indeed m, = m(x) because x and w define

the same direction. In order to proceed we put f(r) = 'rr(s2 +J%) and compute
%

(3.33) Tr(s? + 3%) = £(r) = (n - 1(ng? - y

According to Lemma 3.3 it follows that
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3 (3.34) R(Tr(s2 + 32)) = -(gL + kn)
B with g,k defined by (3.27), (3.28) and f by (3.33). At this point equation (3.17)

has the form

1

Y (3.35) (81X = nm) + (B2 - y2 - g1 + ((n? - 2m82 + Y2 =K =0 . .
W0y

’t. The only way in which (3.35) can possibly give a consistent equation for B8 is if it
3

¥

'f%‘ factors out (I ~ nm), that is if

1

"ot (3.36) (n® - 2n)g2 + y2 - x = -n(82 - y2 - g) .

3

:, )| But (3.36) is equivalent to

oW

;'c:- (n = 1)(nB2% = y2) = ng + k

which in view of (3.33) is nothing but (3.32) in disguise. Therefore the equation (3.35)

:. \ becomes
e 2._ .2
i v (3.37) (3,8 + 8%~ y* = g)(XI ~nm) =0
K.
o:. which is satisfied if B solves (3.22) because (3.27) and (3.33) imply
(3" r
- 1 -
o glr) =2 [ & V(n8? - y?)as.
o 0
." We present now the blow-up argument.
BN
-,(_"; Theorem 3.4
n'
W Let us assume that beside the conditions (3.18) and (3.19) of Proposition 3.2 being
N‘ fulfilled, the initial data for the system (3.16), (3.17) satisfy also
k)
3 a
::i' (3.38) Yplr) = 0 for 0 < r < Ry for some Ry >0,
'&'
:'| (3.39) Bolr) =0 for 0 < r <R for some 0 <R < Ry,
g oR
J (3.40) [ Bo(x)x™ 'dr < 0 for some 1 < a, (a near 1)
"A"'.'; ‘ R 0 4 ¢
b
;'\’ )
W 5 Then the solution to the distorted Euler equations (3.16), (3.17) having
o WA,
@ wplx) = vq(ix]) -ﬁ:—r, Sotx) = Bo({x|) (X = nw{x)) for initial data breakdown in finite
kA time. More precisely S breaks down near |x| = R.
o
L
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Proof

As proven in Proposition (3.2) the solutions are w(t,x) = Y(t,[x[) Tfr'

s(t,x) = B(t,|x|)(I - nm) with y,» satisfying (3.22)-(3.25). Since (3.23) can be

integrated
t

(3.41) y(t,r) = yg(r)exp [ (1 - n)B(s,r)ds
o

it follows from (3.38) that

(3.42) yit,r) = 0 for 0 < r < Ry .

Therefore, for 0 ¢ r < Ry equation (3.22) becomes

n~1 ¥
- [ 8" 'ng%(s)as = 0 .

(3.43) 3.8 + 82
r 0

Now we claim that from (3.43) it follows that property (3.39) is preserved by B8(t,r),

t » 0, as long as both £ and Yy are smooth. Indeed multiplying (3.43) by B(t:,x‘)r“'1

and integrating between 0 and R one obtains

R R R R
18 ¢ g2, ar + [ 83t Yar = (n - Un [ g%(e,000" [ Bleer) o o
2 at 0 0 0 Y
R R R
14 [ g2, memar = [ 82t Mintn - 1 [ BLEL) 45 - g(e,riar .
2 dt 0 0 : [}
b 4
Thus
d R R Bl{t,s) R 2 -1
=/ 82(¢,r)r™ 'ar < 2 Max (n(n-1) | <8l a8 - 8(t,p)) [ B2(e,r)r"ar
0 pel0,R] 0 0

and therefore, as long as B is smooth

R R t
f 82(e,e)e"™” lar « ] 8 (r)e" tar exp 2 [ Max (n(n = 1) f Ell‘g- dg - B(t,p))dr
0 0 0 pe(0,R] p
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and by (3.39) it follows

R
(3.44) [ 8%t,r)r™lar=0, t»>0.
0

Let us take now a > 1 such that (3.40) is valid and a small enough such that

aR < Ry, n(n = 1)log a < 1. Integrating in (3.43) between R and @R we obtain

a aR aR
(3.45) %/ st lar + (1 - ntn - NDloga) [ 8Ee,08" as <
R R
R
<nln - Nloga [ 8%(t,s)s" 'as =0 .
0
Now
R 5 n-1 n 1 ok
[ 8%t,s)8" Tds > = (f 8it,s)s™ as)? .
R R"a" -1 R
It follows that
aR aR
(3.46) %; B(t,r)r™ lar + B Zmln - Dlog a) (o g0 1)aM=T46)2 ¢ o
R R"(a™ - 1) R

and since
oR 1
[ Botr)r™lar < 0
R
aR
we conclude that f B(t,r)rn—ldr becomes -» for t not larger than
R
n, n
-1 1
T R (a ) o

® " 21 - n(n - Dlog a) ~_ aR -
N RE T Yar
R

~-20~
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b *\,

N \_.: One can easily obtain a blow-up argument for equations (3.22), (3.23) at the origin
. if one drops the requirement that 80(0) = 0. However, this would lead to functions

A

Ly

N l,.‘ . S(t,x) which are not defined at x = 0.
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